More on perfectly normal non-realcompact spaces
نویسندگان
چکیده
منابع مشابه
Two More Perfectly Normal Non-metrizable Manifolds
We show that there is a perfectly normal non-metrizable manifold if there is a Luzin subset of the real line, and that there is a countably compact perfectly normal non-metrizable manifold in any model of set-theory obtained by adding Cohen reals to a model of ZFC +♦.
متن کاملMaximal Realcompact Spaces and Measurable Cardinals
Comfort and Hager investigate the notion of a maximal realcompact space and ask about the relationship to the first measurable cardinal m. A space is said to be a P (m) space if the intersection of fewer than m open sets is again open. They ask if each realcompact P (m) space is maximal realcompact. We establish that this question is undecidable.
متن کاملLocally realcompact and HN-complete spaces
Two classes of spaces are studied, namely locally realcompact spaces and HNcomplete spaces, where the latter class is introduced in the paper. Both of these classes are superclasses of the class of realcompact spaces. Invariance with respect to subspaces and products of these spaces are investigated. It is shown that these two classes can be characterized by demanding that certain equivalences ...
متن کاملLocally Compact Perfectly Normal Spaces May All Be Paracompact
Using results announced by Stevo Todorcevic we establish that if it is consistent that there is a supercompact cardinal then it is consistent that every locally compact perfectly normal space is paracompact. Modulo the large cardinal, this answers a question of S. Watson. We also solve a problem raised by the second author, proving that it is consistent with ZFC that every first countable hered...
متن کاملNon-realcompact Products with a Metric Factor
Given a metric space X we characterize those Y so that the realcompactification of X×Y is just the product of X with the realcompactification of Y . Examples are constructed to illustrate that the properties involved do depend on the metric spaces
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 2006
ISSN: 0166-8641
DOI: 10.1016/j.topol.2005.04.009